Model 370 Intercom Beltpack

User Guide

Issue 2, August 2016

This User Guide is applicable for serial numbers M370-00251 and later with application firmware 2.1 and later and Dante firmware 1.1 (Ultimo 2.2.3.1) and later

Copyright © 2016 by Studio Technologies, Inc., all rights reserved www.studio-tech.com

50621-0816, Issue 2

This page intentionally left blank.

Table of Contents

Revision History	4
Introduction	5
Getting Started	7
Operation	12
Technical Notes	15
Specifications	19

Revision History

Issue 2, August 2016:

1. Released strictly for incorporating typographical corrections and enhanced explanations.

Issue 1, April 2016:

1. Initial release.

Introduction

The Model 370 Intercom Beltpack starts with the features required of traditional broadcast 2-channel party-line (PL) intercom user devices and adds the advanced performance and capabilities that Dante audio-over-Ethernet provides. Over a standard IP network, multiple Model 370 units can be used in PL intercom applications with help from an external Dante-enabled audio matrix. Or, units can be used "pointto-point" or directly interfaced with ports on compatible matrix intercom systems. Only a single Power-over-Ethernet (PoE) connection is required for operation. Key user features can be easily configured including preamplifier gain, talk button operation, and headphone signal routing. User features include integrated sidetone, remote microphone off, and call alerting. This capability, along with the great audio quality provided by the digital audio signal path, offers a superior user experience.

Set up and configuration of the 2-channel Model 370 is simple. An etherCON® RJ45 jack is used to interconnect with a standard twisted-pair Ethernet port associated with a local-area network (LAN). This connection provides both power and bidirectional digital audio. A broadcast or intercom-style stereo or monaural headset with a dynamic microphone interfaces to the unit using a 5-pin XLR connector. Five DIP switches are used to establish the unit's operating parameters. Two "push-in/push-out" rotary level controls make it easy to set the headphone output volume as well as maintaining the desired settings. The Model 370's enclosure is made from an aluminum alloy which offers both light weight and ruggedness. A stainless steel "belt clip," located on the back of the unit, allows direct attachment to a user's clothing.

The audio quality of the Model 370's two audio channels is excellent, with low distortion, low noise, and high headroom. Careful circuit design and rugged components ensure long, reliable operation. A wide range of applications can be supported, including TV, radio, and streaming broadcast events, corporate and government AV installations, and post-production facilities.

Dante Audio-over-Ethernet

Audio data is sent to and received from the Model 370 using the Dante audio-over-Ethernet media networking technology. As a Dante-compliant device, the Model 370's two output (Dante transmitter) and two input (Dante receiver) audio channels can be assigned to other devices (routed) using the Dante Controller software application. The Dante transmitter and receiver channels are limited to supporting four

Figure 1. Model 370 Intercom Beltpack top and bottom views

Dante flows, two in each direction. The digital audio's bit depth is 24 with a sampling rate of 48 kHz. Two bi-color LEDs provide an indication of the Dante connection status. The Dante Controller's identify command takes on a unique role with the Model 370. Not only will it cause the talk button LEDs to light in a unique highly visible sequence, it will also turn off any active talk channels.

Audio Quality

The Model 370's completely "pro" performance really bucks the reputation of "intercom audio." A low-noise, wide dynamic-range microphone preamplifier and associated voltage-controller-amplifier (VCA) dynamics controller (compressor) ensures that input audio quality is preserved while minimizing the chance of signal overload. The output of the microphone preamp and compressor is routed to an analog-to-digital conversion (ADC) section that supports a sampling rate of 48 kHz with a bit depth of up to 24. The audio signal, now in the digital domain, routes through the processor and on to the Dante interface section where it is packetized and prepared for transport over Ethernet.

Audio input signals arrive via the Dante receiver channels and pass into the Model 370's processor. The sampling rate is 48 kHz with a bit depth of up to 24. Channel routing, headphone level control, and sidetone creation are performed in the digital domain. This provides flexibility, allows precise control, and keeps the three user level potentiometers (channel 1, channel 2, and sidetone) from having to directly handle analog audio signals. The two audio channels destined for the phones outputs are sent to a high-performance digital-toanalog converter and then on to robust driver circuitry. High signal levels can be provided to a variety of headsets, headphones, and earpieces.

Call Function

A call function allows Model 370 users to send and receive channel-specific visual alert signals. Pressing the dedicated call button on the top of a unit is all that's required to signal other users that attention is requested. Using 20 kHz tones, the call signals are sent within the audio channels ("in band") allowing interoperability between multiple Model 370 units as well as being compatible with legacy partyline intercom systems. Call signals can be useful to indicate to users that they are needed "on headset" or should be actively listening to an intercom channel. The call function can also be used to provide realtime cues to production personnel during the running of live events.

Configuration Flexibility

A highlight of the Model 370 is its ability to be easily configured to the meet the needs of specific users and applications. Five DIP switches allow control of the microphone preamplifier gain, talk button operation, and audio routing to the headphone outputs. The gain of the microphone preamplifier can be selected from nominally 40 or 46 dB. This allows compatibility with dynamic microphones that are part of many industry-standard broadcast and intercom headsets. The two pushbutton switches that control the talk audio on/off status can be individually configured for push to talk or push to talk/tap to latch operation. Two audio channels arrive via Dante and are destined for the headphone outputs. Each input can be independently routed to one or both audio outputs. This

allows a variety of listening environments to be created, including dual-channel monaural.

Ethernet Data and PoE

The Model 370 connects to an Ethernet data network using a standard 100 Mb/s twisted-pair Ethernet interface. The physical interconnection is made by way of a Neutrik® etherCON RJ45 connector. While compatible with standard RJ45 plugs, etherCON allows a ruggedized and locking interconnection for harsh or highreliability environments. An LED displays the status of the network connection.

The Model 370's operating power is provided by way of the Ethernet interface using the 802.3af Power-over-Ethernet (PoE) standard. This allows fast and efficient interconnection with the associated data network. To support PoE power management, the Model 370's PoE interface reports to the power sourcing equipment (PSE) that it's a class 1 (very low power) device. If a PoE-enabled Ethernet port can't be provided by the associated Ethernet switch a low-cost PoE midspan power injector can be utilized.

Future Capabilities and Firmware Updating

The Model 370 was designed so that its capabilities and performance can be enhanced in the future. A USB connector, located on the unit's main circuit board (underneath the unit's cover), allows the application firmware (embedded software) to be updated using a USB flash drive.

To implement the Dante interface the Model 370 uses Audinate's Ultimo[™] integrated circuit. The firmware in this

integrated circuit can be updated via the Ethernet connection, helping to ensure that its capabilities remain up to date.

Getting Started

What's Included

Included in the shipping carton are a Model 370 Intercom Beltpack and a printed copy of this guide. As a device that is Power-over-Ethernet (PoE) powered, no external power source is provided. Should a PoE midspan power injector be required it must be purchased separately.

Connections

In this section signal interconnections will be made using the two connectors located on the bottom of the Model 370. An Ethernet data connection with Powerover-Ethernet (PoE) capability will be made using either a standard RJ45 patch cable or an etherCON protected RJ45 plug. A dual- or single-earpiece headset (stereo or monaural) will be connected using a cable-mounted 5-pin male XLR connector.

Ethernet Connection with PoE

A 100BASE-TX Ethernet connection that supports Power-over-Ethernet (PoE) is required for Model 370 operation. This one connection will provide both the Ethernet data interface and power for the Model 370's circuitry. A 10BASE-T connection is not sufficient and a 1000BASE-T ("GigE") connection is not supported unless it can automatically "fall back" to 100BASE-TX operation. The Model 370 supports Ethernet switch power management, enumerating itself as a PoE class 1 device. The Ethernet connection is made by way of a Neutrik etherCON protected RJ45 connector that is located on the bottom panel of the Model 370. This allows connection by way of a cable-mounted etherCON connector or a standard RJ45 plug. The Model 370's Ethernet interface supports auto MDI/MDI-X so that a "crossover" or "reversing" cable should not be required.

Ethernet Connection without PoE

As previously discussed in this guide, the Model 370 was designed such that the Ethernet connection will provide both data and Power-over-Ethernet (PoE) power. There may be situations where the associated Ethernet switch does not provide PoE power. In such cases an external PoE midspan power injector can be used. If the selected midspan power injector is 802.3af-compatible it should function correctly. Midspan units are available from a variety of sources, including many on-line retailers.

Headset Connection

The Model 370 provides a 5-pin female XLR connector that interfaces with the microphone and headphone connections of an intercom or broadcast-style headset. Refer to Figure 2 for connection details. The microphone input connections are intended for use with unbalanced dynamic microphones. Balanced microphones should, in most cases, also function correctly if the signal – (low) is connected to Model 370's mic in –/shield connection. No support is provided for microphones that require low-voltage "eletret," P12 phantom, or P48 phantom powering.

To allow users of stereo (dual-earpiece or "double-muff") headsets to hear a monaural version of the two output channels does not require special wiring of the 5-pin male XLR mating connector. The headset's left phones channel should always be wired to pin 4 and the right phones channel to pin 5. Configuration choices, discussed later in this guide, can then be used to create the desired monaural output. It's important not to connect together (short) pins 4 and 5 of the Model 370's headset connector as damage to the Model 370's output circuitry could result.

Monaural (single-earpiece or "singlemuff") headsets should be wired such that its headphone is wired only to pin 4; pin 5 should be remain unused. The configuration switches, discussed later in this guide, can be used to create a monaural output. (Technically this can send audio to both pins 4 and 5 of the Model 370's headset connector but the headset will only connect to pin 4.)

It's possible that some Beyerdynamic interconnecting cable assemblies terminate their 5-pin male XLR connector with their earpiece's left channel on pin 5 and right channel on pin 4. This is opposite from what the Model 370 requires. As such, "flipping" pins 4 and 5 in the headset's 5-pin male XLR connector may be required so that the left and right channels from the Model 370 match correctly.

Dante Configuration

For audio to pass to and from the Model 370 requires that several Dante-related parameters be configured. These configuration settings will be stored in non-volatile memory within the Model 370's circuitry. Configuration will typically be done with the Dante Controller software application which is available for download free of charge at www.audinate.com. Versions of Dante Controller are available to support Windows® and OS X® operating systems. The Model 370 uses the Ultimo 2x2 channels (2-input/2-output) integrated circuit to implement the Dante architecture.

The two Dante transmitter (Tx) channels associated with the Model 370's Dante interface must be assigned to the desired receiver channels. This achieves routing the Model 370's two talk output audio channels to the device (or devices) that will be "listening" to them. Within Dante Controller a "subscription" is the term used for routing a transmitter flow (a group of output channels) to a receiver flow (a group of input channels).

The number of transmitter flows associated with an Ultimo integrated circuit is limited to two. These can either be unicast, multicast, or a combination of the two. If the Model 370's transmitter channels need to be routed to more than two flows it's possible that an intermediary device, such as a rack-mounted digital signal processor unit with more available flows, can be used to "repeat" the signals. The two Dante receiver (Rx) channels associated with the Model 370's audio inputs also need to be routed to the desired Dante transmitter channels. These two audio signals will be sent to the Model 370's headphone outputs.

The Model 370 supports an audio sample rate of 48 kHz with a limited selection of pull-up/pull-down values available. In most cases the default will be used and a pull-up or pull-down rate will not be selected. The Model 370 can serve as the clock master for a Dante network but in most cases it will be configured to "sync" to another device.

The Model 370 has a default Dante device name of **ST-M370** and a unique suffix. The suffix identifies the specific Model 370 that is being configured. The suffix's actual alpha and/or numeric characters relate to the MAC address of the unit's Ultimo integrated circuit. The two Dante transmitter (Tx) channels have default names of **Ch1** and **Ch2**. The two Dante receiver (Rx) channels have default names of **Ch1** and **Ch2**. Using Dante Controller the default device name and channel names can be revised as appropriate for the specific application.

Model 370 Configuration

Five DIP switches are used to select the mic preamplifier gain and how the user controls on the Model 370 will function. These configuration choices allow the performance of the unit to be optimized for specific applications and user preferences. The switches are accessible from the back of the unit's enclosure, through a small opening that is located under the top of the belt clip. To access the switches requires that the belt clip be rotated. Normally the belt clip is secured to the back using one rivet (non-removable) and one machine screw that has a thread pitch of 6-32. To allow the belt clip to rotate, remove the machine screw using a #1 Phillips-head screwdriver. The belt clip should now be able to be easily rotated in either direction. Save the screw so that it can be re-installed once the desired configuration choices have been made. Note that the threaded fastener within the back of the Model 370's chassis has an internal locking mechanism (a plastic bushing) that prevents the belt clip's 6-32 machine screw from vibrating loose. So no additional method of thread locking, such as a lock washer or chemical compound, is necessary.

The five switches provide a nice set of configuration choices. One allows the gain of the microphone preamplifier to be adjusted. Two of the switches are used to select how the talk buttons function. And the last two switches select how the input audio signals are routed to the headphone outputs. The five switches are connected to the Model 370's logic circuitry which responds to changes by way of the application firmware; no audio passes directly through the switches. Changes made to any of the switches will immediately be reflected in the unit's operation. A power cycle is not required for configuration changes to be recognized and implemented.

Microphone Preamp Gain

Switch SW1 allows the gain of the microphone preamplifier to be selected. When SW1 is in its down (off) position 40 dB of gain is selected. This will be appropriate for most applications. (Technically this gain is approximately equal to the gain provided within an RTS® BP-325 analog party-line beltpack.) Place SW1 to its up

Figure 3. Microphone preamp gain configuration switch

(on) position to select the 46 dB gain setting. This additional 6 dB of gain may be helpful in some applications, such as with headsets that have a low microphone output level. The higher gain setting may also be useful when the Model 370 is going to be deployed at events where users are not able to speak at normal levels, e.g., sporting events such as golf tournaments.

The compressor active LED, visible on the bottom of the Model 370 adjacent to the headset connector, can act as a guide when setting the preamp gain. During normal talk operation the compressor active LED should light intermittently. If it rarely lights and the gain is set to 40 dB, it might be a good idea to change to setting to 46 dB. If the LED is lit fully during normal talking and the gain is set for 46 dB, changing it to the 40 dB setting might be warranted. There's no "hard and fast" rule about what gain setting is appropriate. But unless otherwise indicated, 40 dB is typically a good choice.

Talk Button Modes

On the Model 370's top panel are two pushbutton switches that allow the user to control the on/off status of the headset microphone audio that's sent to the two audio output (Dante transmitter) channels. Configuration switches SW2 and SW3 allow the buttons' operating modes to be independently configured. The two operating choices are push to talk and push to talk/tap to latch. SW2 is used to select the operating mode for the talk button associated with channel 1. SW3 is used to select the operating mode for the talk button associated with channel 2. Many applications are best served when the buttons are configured for push to talk operation. This ensures that a channel won't accidentally be left in the talk mode. But there certainly are valid situations where the push to talk/ tap to latch setting will prove to be very useful.

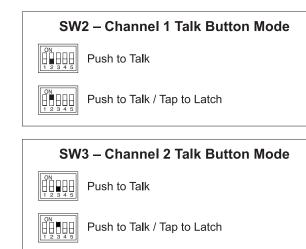
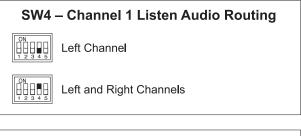
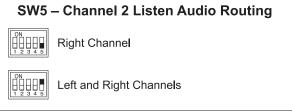




Figure 4. Channel 1 and channel 2 talk button mode configuration switches

Headphone Audio Routing Modes

How the Model 370's two audio input (Dante receiver) channels are routed to the headphone output channels can be configured using switches SW4 and SW5. The choices provide flexibility in how the audio sources are presented to the user. When using a stereo ("double-muff") headset it's common for the two audio input sources to be independently routed to the left and right channels. But the

Figure 5. Channel 1 and channel 2 headphone audio routing mode configuration switches

Model 370's flexibility allows either or both sources to be sent to both the left and right outputs thus creating a monaural listening environment. When using a stereo headset this is often referred to as a dual-channel mono output. If a monaural ("single-muff") headset is used these configuration options allow the two input channels to be combined to monaural so that the listener can hear both input sources.

When SW4 is in its down (off) position audio from input channel 1 will be sent to the left channel (pin 4) of the headset connector. When SW4 is in its up (on) position the audio is sent to both the left channel (pin 4) and the right channel (pin 5) of the headset connector.

When SW5 is in its down (off) position audio from input channel 2 will be sent to the right channel (pin 5) of the headset connector. When SW5 is in its up (on) position the audio is sent to both the left channel (pin 4) and the right channel (pin 5) of the headset connector.

Operation

At this point Model 370 operation should be taking place. An Ethernet connection with Power-over-Ethernet (PoE) capability should have been made. Alternately, a midspan power injector, in "series" with the Ethernet connection, should have been put into place. A headset terminated on a 5-pin male XLR connector should be plugged into the headset connector.

The Model 370's Dante configuration settings should have been selected using the Dante Controller software application. In this way the two audio output (Dante transmitter) channels and two audio input (Dante receiver) channels should have been routed to the Dante receivers and transmitters on associated equipment. The Model 370's five configuration switches should have been used to select the desired operating characteristics.

Initial Operation

The Model 370 will begin to function as soon as a Power-over-Ethernet (PoE) power source is connected. However, it may take 20 seconds or longer for full operation to commence. Upon initial power up the three status LEDs located on the bottom panel below the etherCON RJ45 jack will begin to light as network and Dante connections are established. The three pushbutton switches on the top panel will light in a test sequence to indicate that the main operating firmware (embedded software) has started. Once the entire sequence has completed and the Dante connection has been established full operation will begin.

Ethernet and Dante Status LEDs

Three status LEDs are located below the etherCON RJ45 connector on the Model 370's bottom panel. The LINK ACT LED will light green whenever an active connection to a 100 Mb/s Ethernet network has been established. It will flash in response to Ethernet data packet activity. The SYS and SYNC LEDs display the operating status of the Dante interface and associated network. The SYS LED will light red upon Model 370 power up to indicate that the Dante interface is not ready. After a short interval it will light green to indicate that it is ready to pass data with another Dante device. The SYNC LED will light red when the Model 370 is not synchronized with a Dante network. It will light solid green when the Model 370 is synchronized with a Dante network and an external clock source (timing reference) is being received. It will slowly flash green when the Model 370 is part of a Dante network and is serving as a clock master. It's possible that up to 20 seconds may be required for the SYNC LED to reach its final state.

How to Identify a Specific Model 370/Remote Talk Off Function

The Dante Controller software application offers an identify command that can be used to help locate a specific Model 370. When identify is selected it will send a command to a single Model 370 unit. On that specific unit the three pushbutton LEDs (two talk on/off and call) will light in a unique pattern. In addition, the SYS and SYNC status LEDs, located directly below the etherCON RJ45 connector on the bottom panel, will slowly flash green. After a few seconds the LED identification patterns will cease and normal Model 370 button LED and Dante SYS and SYNC status LED operation will resume.

The identify command also causes a talk off ("mic kill") function to activate. If either or both talk on/off buttons are configured to the push to talk/tap to latch mode, and they are latched on, the identify command will cause them to latch off. This allows talk channels on a specific Model 370 that have been accidentally enabled to be remotely turned off.

Listen Level

Two rotary level controls ("pots"), located on the Model 370's top panel, allow adjustment of the level of the two audio input signals as they are sent to the headphone outputs. Depending on the configuration of the unit, audio input 1 can be sent to the left headphone output or to both the left and right headphone outputs; audio input 2 can be sent to the right headphone output or to both the left and right headphone outputs. The pots are "pushin/push-out" type which allows the associated knobs to be in their "out" positions to be adjusted and their "in" positions when protection from changes is desired.

The headphone output audio quality should be excellent, with high maximum output level and low distortion. Highfrequency audio content is limited above 10 kHz, preventing unwanted signals from reaching the transducers of the associated headset. Analog audio signals do not pass directly through the rotary level controls. The position of the pots is recognized by the Model 370's processor which then adjusts the signal level in the digital domain. When a pot is in its fully counterclockwise position the associated audio signal is fully muted. The on/off status of the talk channels, or the status of the call function, does not impact the headphone outputs. They are independent functions.

Compressor Active LED

A red LED indicator is located on the bottom panel adjacent to the headset connector. Labeled COMP, the LED displays the status of the microphone audio compressor function. It will light whenever the input level from the microphone is such that the dynamic range of the talk signal is being controlled. It's perfectly acceptable for the LED to light intermittently while a user is talking in a normal voice level into the microphone. But if the COMP LED lights solid while a user is talking at a normal voice level and the mic preamp gain is set for 46 dB, this will typically indicate that the mic gain setting should be changed to 40 dB. Conversely, if the LED almost never lights when normal talking is taking place and the mic preamp gain is set for 40 dB, it's possible that changing the gain to 46 dB would be beneficial. The compressor active LED will function whether not either or both of the talk channels are active.

Talk Buttons

Two pushbutton switches are associated with the Model 370's audio output channels. How they function will depend on the configuration of the unit. Each button can be configured independently. When a button has been set for push to talk mode how it functions is pretty self-explanatory. Press and hold the button when headset microphone audio is to be sent out the associated audio output channel. The button's green LED will light to indicate that the output is active. If the button has been configured for the push to talk/tap to latch mode operation is a bit different and certainly more flexible. Press and hold the button to activate the talk function. When released the talk function will turn off. Momentarily pressing ("tapping") the button will cause the function to changes states; off-to-on or on-to-off. Whenever the output is active the green LED will light.

Sidetone Function

The Model 370 includes a sidetone function that sends microphone audio to both the left and right headphone outputs whenever either or both of the talk functions are active. The audio quality should be excellent and will provide the user with a confidence signal that they are actively talking to other intercom users. Sidetone audio is always sent to both headphone channels, even if only talk channel 1 or talk channel 2 is active. This is because the function is trying to simulate what a user would hear if they didn't have a headset covering their ears. It is not intended to indicate to the user which output channel is active.

The level of the sidetone audio being sent to the left and right headphone channels is adjusted using the rotary level control ("pot") located on the bottom of the unit. A small straight blade screwdriver (e.g., a "greenie") can be used to adjust the pot. Although with some practice one's thumb and index finger can also be effective. Typically the exact sidetone level is not critical and most users will not be concerned about changing it. But setting sidetone to a reasonable level is important. Setting the level too low will encourage users to speak too loudly; setting it too high and users will be tempted to speak hesitantly. The two level controls on the top panel do not impact the sidetone level. Audio does not pass directly through the sidetone pot but instead is used by the Model 370's processor to control the level in the digital audio domain.

Call Function

An integrated call function allows Model 370 users, and users of compatible equipment, to signal to each other visually. Individual call functions are provided for each of the two talk channels. Either or both can have the call function active at any one time. Technically call is achieved by sending a 20 kHz audio tone on the desired audio output channel. This signal is summed (mixed) with normal talk audio. The Model 370's two audio input channels continually monitor for the presence of 20 kHz. A call signal is recognized on a channel when a continuous 20 kHz tone is detected on the audio input for that channel.

Normal talk audio signals will not be confused with a talk signal. Digital filters within the Model 370's processor integrated circuit limit the high frequency response of the audio signals to about 10 kHz in both the input and output signal paths. This helps to ensure that false call detection won't take place as well as limiting the chance of causing issues in events where headphone extended high-frequency response is possible, e.g., dog shows or other animal events.

To send a call signal is simple. Just enable either or both of the talk buttons and simultaneously press and hold the call button. When call sending is active the orange LED associated with the call button will light. At the same time the channel or channels that are active in their talk mode will have their associated orange LED flash. Release the talk button or turn the call function(s) off and sending of the call signal will cease. As expected, pressing the call button when neither talk channel is active will result in nothing occurring.

Whenever a Model 370 audio input channel receives a call signal (20 kHz audio tone) the orange LED on its companion button will flash. If a call signal is present on both audio input channels then the orange LEDs on both talk buttons will flash. When receiving a call signal on either or both channels the orange LED associated with the call button will not light.

By using a 20 kHz tone the Model 370 is compatible with legacy intercom equipment, including the venerable RTS BP-325. When interconnecting Model 370 and BP-325 units using an appropriate Danteenabled interface, such as the Studio Technologies' Model 45DR, call signaling is fully compatible. Compatibility with the Clear-Com method of call functionality is possible by using the Model 45DC partyline interface. Also, devices such as the Studio Technologies' Model 44D Audio Interface product will send and receive 20 kHz signals that will be compatible. The Model 44D refers to these signals as GPI (general purpose input) and GPO (general purpose output) but the signaling, transported via Dante audio paths, is 20 kHz tones.

Technical Notes

IP Address Assignment

By default the Model 370's Ethernet interface will attempt to automatically obtain an IP address and associated settings using DHCP (Dynamic Host Configuration Protocol). If a DHCP server is not detected an IP address will automatically be assigned using the link-local protocol. This protocol is known in the Microsoft® world as Automatic Private IP Addressing (APIPA). It is also sometimes referred to as auto-IP (PIPPA). Link-local will assign an IP address in the IPv4 range of 169.254.0.1 to 169.254.255.254. In this way multiple Dante-enabled devices can be connected together and automatically function, whether or not a DHCP server is active on the LAN. Even two Dante-enabled devices that are directly interconnected using an RJ45 patch cord will, in most cases, correctly acquire IP addresses and be able to communicate and transport audio. An exception does arise when trying to directly interconnect two Dante-enabled devices that use the Ultimo Dante implementation, such as two Model 370 units. An Ethernet switch is required to provide the Ethernet ports to correctly interconnect two Ultimobased devices directly with each other. (The technical reason relates to the need for the slight latency provided by an Ethernet switch.)

Using the Dante Controller software application the Model 370's IP address and related network parameters can be set for a fixed ("static") configuration. While this is a more involved process than simply letting DHCP or link-local "do their thing," if fixed addressing is necessary then that capability is available. But in this case it's highly recommended that each unit be physically marked, e.g., directly using a permanent marker or "console tape," with its specific IP address. If knowledge of a Model 370's IP address has been misplaced there is no reset button or other method to easily restore the unit to a default IP setting.

In the unfortunate event that a device's IP address is "lost," the Address Resolution Protocol (ARP) networking command can be used to "probe" devices on a network for this information. For example, in Windows OS the **arp** –**a** command can be used to display a list of LAN information that includes MAC addresses and corresponding IP addresses. The simplest means of identifying an unknown IP address is to create a "mini" LAN with a personal computer connected directly to the Model 370. Then by using the appropriate ARP command the required "clues" can be obtained.

Optimizing Network Performance

For best Dante audio-over-Ethernet performance a network that supports VoIP QoS capability is recommended. This can typically be implemented on virtually all contemporary managed Ethernet switches. There are even specialized switches that are optimized for entertainment-associated applications. Refer to the Audinate website (www.audinate.com) for details on optimizing networks for Dante applications.

Application Firmware Version Display

As part of the Model 370's power-up sequence the unit's application firmware version number can be displayed. This is

useful when working with factory personnel on application support and troubleshooting. Before connecting the PoE Ethernet cable, press and hold the call button. Then connect the Ethernet cable. Upon application of power the Model 370 will go through its normal power-up sequences followed by a display of the firmware version. The LED associated with the channel 1 talk button will "flash" to display the major version number. Then the LEDs associated with the channel 2 talk button will "flash" to display the minor version number. Once the version number has been displayed the call button can be released. As an example of what would be a typical firmware display, if the channel 1 talk button "flashed" twice followed by the channel 2 talk button "flashing" once this would indicate that application firmware version 2.1 was present in the Model 370.

Application Firmware Update Procedure

It's possible that updated versions of the application firmware (embedded software) that is utilized by the Model 370's processor (microcontroller or MCU) integrated circuit will be released to add features or correct issues. Refer to the Studio Technologies website for the latest application firmware file. The unit has the ability to load a revised file into the MCU's non-volatile memory by way of a USB interface. The Model 370 implements a USB host function that directly supports connection of a USB flash drive. The Model 370's MCU updates its firmware using a file named **m370.bin**.

The update process begins by preparing a USB flash drive. The flash drive doesn't have to be empty (blank) but must be in the personal-computer-standard FAT32 format. Save the new firmware file in the root directory with a name of m370.bin. Studio Technologies will supply the application firmware file inside a .zip archive file. While the firmware file inside of the zip file will adhere to the naming convention required by the Model 370, the name of the zip file itself will include the file's version number. For example, a file named m370v2r1MCU.zip would indicate that version 2.1 of the application firmware (m370.bin) is contained within this zip file. Once the USB flash drive is inserted into the USB interface. located on the main circuit board under the cover, the unit must be powered off and again powered on. At this point the file will automatically load. The precise steps required will be highlighted in the next paragraphs of this guide. After the firmware has been updated the LEDs associated with the talk buttons should be used to confirm that the desired application firmware version has been successfully installed.

To install the application firmware file follow these steps:

- Disconnect power from the Model 370. This will entail removing the Ethernet connection that is providing PoE power.
- 2. Remove the cover from the Model 370. Begin by removing the four Phillipshead screws (#1 screwdriver tip), two per side. Be certain to save the screws so that re-assembly will be fast and painless. Then carefully slide the cover forward to separate it from the level controls and buttons, then lift it off.
- Locate the USB connector on the main circuit board. Its adjacent to the call button. Insert the prepared USB flash drive into it.

- 4. Apply power to the Model 370 by connecting to a Power-over-Ethernet (PoE) Ethernet signal.
- 5. After a few seconds the Model 370 will run a "boot loader" program that will automatically load the new application firmware file (m370.bin). This load process takes only a few seconds. During this time period the call button's LED will flash slowly in alternate colors. Once the entire loading process is over, taking approximately 10 seconds, the Model 370 will restart using the newly loaded application firmware.
- 6. At this time the Model 370 is functioning with the newly loaded application firmware and the USB flash drive can be removed. But to be conservative, remove PoE power first and then remove the USB flash drive.
- 7. Press and hold the call button, apply power to the Model 370, and "read" the application firmware version number by observing the two talk button LEDs. Ensure that this is the desired version.

Note that upon power being applied to the Model 370 if the USB flash drive doesn't have the correct file (**m370.bin**) in the root folder no harm will occur. Upon power up the call button's LEDs will flash on and off rapidly for a few seconds to indicate this condition and then normal operation using the unit's existing application firmware will begin.

Ultimo Firmware Update

As previously discussed in this guide, the Model 370 implements Dante connectivity using the Ultimo 2x2 channels integrated circuit from Audinate. The Dante Controller software application can be used to determine the version of the firmware (embedded software) residing in the Ultimo "chip." This firmware can be updated by way of the Model 370's Ethernet connection. The latest Dante firmware file is available on the Studio Technologies website. The Dante Firmware Update Manager (FUM) application is used to install the firmware. This program is also available for download on the Studio Technologies website.

Specifications

Audio Channels: 2 talk, 2 listen

Power Source:

Power-over-Ethernet (PoE): class 1 (very low power, ≤3.84 watts)

Network Audio Technology:

Type: Dante Audio-over-Ethernet

Bit Depth: up to 24

Sample Rate: 48 kHz

Number of Transmitter (Output) Channels: 2

Number of Receiver (Input) Channels: 2

Dante Audio Flows: 4; 2 transmitter, 2 receiver

Network Interface:

Type: twisted-pair Ethernet, Power-over-Ethernet (PoE) supported

Data Rate: 100 Mb/s (10 Mb/s Ethernet not supported)

Microphone Input:

Type: unbalanced, for use with dynamic microphones

Gain: 40 or 46 dB, selectable, ref. –60 dBu input to Dante output (–20 dBFS nominal)

Frequency Response: 50 Hz to 10 kHz, -3 dB

Distortion (THD+N): <0.02%

Dynamic Range: 75 dB

Compressor:

Threshold: 1 dB above nominal level (-19 dBFS) Slope: 2:1

Status LED: compressor active

Headphone Output:

Type: dual-channel

Compatibility: intended for connection to mono or stereo headsets or earpieces with nominal impedance of 50 ohms or greater

Maximum Output Voltage: 3.8 Vrms, 1 kHz, 150 ohm load

Frequency Response: 20 Hz to 10 kHz, -3 dB Distortion (THD+N): <0.002%

Dynamic Range: >100 dB

Call Signal Support:

Method: 20 kHz, ±800 Hz, within audio channels Call Send Level: -20 dBFS

Call Receive Level: -27 dBFS minimum

Connectors:

Headset: 5-pin female XLR

Ethernet: Neutrik etherCON RJ45

USB: type A receptacle (located inside Model 370's enclosure and used only for firmware updates)

Dimensions (Overall):

3.6 inches wide (9.2 cm) 1.6 inches high (4.0 cm) 4.8 inches deep (12.6 cm)

Mounting: intended for portable applications; contains integral belt clip; optional mounting adapter kit allows Model 370 to be permanently mounted

Weight: 0.6 pounds (0.3 kg)

Specifications and information contained in this User Guide subject to change without notice.